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Context

ICube-SERTIT
Technological and service platform 

of ICube Laboratory in University of Strasbourg

More than 30 year experience of valorisation and technological 

transfer in space techniques and Earth Observation applications

Production of geo-information for:
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Context

ICube-SERTIT
Rapid Mapping Service 

a risk and crisis management service operational 24/7/365

Uses remote sensing images (satellites and sometimes drones)

Various sensors: ~15 different, optical and radar

Various delivery products: 

flood, fire, landslides, etc.

Delivery in near-real-time
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Context
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Motivation behind EOReader

Satellite data: every sensor is different (bands, storage, …)

Crucial to harmonize and increase the reliability of the production 

tools used in a industrialized framework (ie. make them as 

sensor-agnostic as possible):

the developer can focus on core tasks (such as extraction) 

without taking into account the sensor characteristics 

New sensors are added effortlessly (if existing in EOReader) and 

without any modification of any tool 

Maintenance and testing are simplified and the code is more 

readable



Main features
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Available sensors
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Optical sensors SAR sensors

Sentinel-2 and Sentinel-2 Theia
Sentinel-3 OLCI and SLSTR

Sentinel-1

Landsat 1 to 9 (MSS, TM, ETM and OLCI) COSMO-Skymed 1st and 2nd Generation

PlanetScope TerraSAR-X, TanDEM-X and PAZ SAR

Pleiades-Neo and Pleiades
SPOT 6-7

RADARSAT-2
RADARSAT-Constellation

Vision-1 ICEYE

WorldView-2 to 4, GeoEye-1 
(and other Maxar sensors)

SAOCOM-1



Open sensors
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EOReader opens the sensor products agnostically

Recognizes the sensor thanks to the product name and/or structure 

(by default)

Example



Load and stack bands
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Loading and stacking bands



Optical bands
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Available optical bands

Satellite bands: RED, NIR, SWIR, PAN, …

Optical Index: NDVI, NDWI, …

DEM bands: DEM, SLOPE, HILLSHADE

Cloud bands (if existing): CLOUDS, CIRRUS, SHADOWS, …

Bands specification

Always orthorectified

Always projected in UTM

Possibility to remove defective pixels, nodata set by default



Optical Band Mapping
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Band mapping between optical sensors

https://eoreader.readthedocs.io/en/latest/_static/optical_band_mapping.html
https://eoreader.readthedocs.io/en/latest/_static/optical_band_mapping.html


SAR bands
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Available SAR bands

Satellite bands: VV, HH, HV, VH

Despeckled bands: VV_DSPK, HH_DSPK, HV_DSPK, VH_DSPK

DEM bands (except hillshade): DEM, SLOPE

Bands specification

Always orthorectified

Always projected in UTM

Nodata set by default



Load and stack bands
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Example



Load and stack bands
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• complicated paths for archived data
• nodata not set if not saved into the file
• bands not scaled (still in uint16, need to read the metadata in order 

to scale them)
• need to use other lib to read as xarray (rioxarray)
• not necessarily orthorectified or projected
• need to adapt this piece of code for each band

• read both archived and extracted data the same way 
• masked and scaled bands, converted to float32 
• always orthorectified or projected in UTM 
• loaded as xarray.DataArray
• same logic to load every band, whether a SLOPE, and 

index or an optical band is asked by the user 
• manage stacks automatically 
• load collocated bands 



Geographical data (always projected in UTM)

CRS

Extent

Footprint

Solar angles

Azimuth angle (mean)

Zenith angle (mean)

Read metadata

As a lxml Element and a dictionary containing the namespaces

Other features
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About the project

EOReader highlights
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First lines: 2.5 years old

Creation of the library: 05/03/2021

Release in open source: 28/04/2021

Version: 0.13.0 

700 commits, 20k lines of python code

Used daily at SERTIT in a lot of production tools

Growing interest in the community



About the project

Why Python?

Why Open source?

Used by a lot of people, useful scientific libraries 

exist in open source, very easy to learn

We code in Python in SERTIT

Promote a hidden code brick

A lot of open source libraries are used in SERTIT, so we wanted to 

contribute back

Soft power to show that we code here at SERTIT
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About the project

EOReader standards
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Lint (pep8 through black, flake8, isort, pre-commit)

Clear and complete documentation (Readme, docstrings, code 

comments, API and tutorials)

Code Coverage > 85% (currently 95%)

License Apache 2.0



About the project

EOReader main dependencies
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Main python libraries

rioxarray (raster + rasterio)

geopandas

lxml

Other softwares

ESA SNAP



About the project

Tools

Testing
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IDE: Pycharm

Versioning tool: Git

Package management system: Pip and conda

Stored in Github, mirrored on an internal instance of Gitlab

Documentation (scientific, tutorials and API) on readthedocs

Thematic validation of the results by SERTIT experts

CI on Gitlab (on commits and weekly)

https://github.com/sertit/eoreader
https://eoreader.readthedocs.io/en/latest/


About the project

EOReader challenges
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Match community and corporates needs and priorities

Manage multi-platform code (Linux and Windows)

Master dependencies (security and exponential growth)



About the project

EOReader’s future
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Get rid of big non python external tools (such as ESA SNAP)

Make sure the code is optimized (speed, memory consumption) 

Implement all of used CEMS sensors



Thank you for your attention
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EOReader

Flood delineations
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EOReader

Satellite differences: Pléiades
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Stacked, tiled, may need orthorectification

Red = band n°1 (inside the stack)



EOReader

Satellite differences: Landsat-8
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1 file per band

Red = band n° 4



EOReader

Satellite differences: Sentinel-2
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1 file per band, very deep file tree, in JPEG-2000 format

Red = band n° 4



EOReader

Satellite differences: Sentinel-3
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1 file per band, needs geocoding, in NetCDF format

Red = band n° 8


