
EOReader

an open source remote-sensing

python library



EOReader

Table of Contents

Context

Main features

About the project

GeoPython - EOReader – 06/2022



Context

GeoPython - EOReader – 06/2022



Context

ICube-SERTIT
Technological and service platform 

of ICube Laboratory in University of Strasbourg

More than 30 year experience of valorisation and technological 

transfer in space techniques and Earth Observation applications

Production of geo-information for:

GeoPython - EOReader – 06/2022

Urban
planning

Forest 

management,

Natural ressource 

monitoring

Environmental
studies

Natural disaster 
and crisis 

management

24/7 
Rapid Mapping

Service



Context

ICube-SERTIT
Rapid Mapping Service 

a risk and crisis management service operational 24/7/365

Uses remote sensing images (satellites and sometimes drones)

Various sensors: ~15 different, optical and radar

Various delivery products: 

flood, fire, landslides, etc.

Delivery in near-real-time

GeoPython - EOReader – 06/2022

Sentinel-2 image near DAXSentinel-2 image near DAX

24/7/365 
Rapid Mapping

Service



Context

GeoPython - EOReader – 06/2022

Motivation behind EOReader

Satellite data: every sensor is different (bands, storage, …)

Crucial to harmonize and increase the reliability of the production 

tools used in a industrialized framework (ie. make them as 

sensor-agnostic as possible):

the developer can focus on core tasks (such as extraction) 

without taking into account the sensor characteristics 

New sensors are added effortlessly (if existing in EOReader) and 

without any modification of any tool 

Maintenance and testing are simplified and the code is more 

readable



Main features

GeoPython - EOReader – 06/2022



Available sensors

GeoPython - EOReader – 06/2022

Optical sensors SAR sensors

Sentinel-2 and Sentinel-2 Theia
Sentinel-3 OLCI and SLSTR

Sentinel-1

Landsat 1 to 9 (MSS, TM, ETM and OLCI) COSMO-Skymed 1st and 2nd Generation

PlanetScope TerraSAR-X, TanDEM-X and PAZ SAR

Pleiades-Neo and Pleiades
SPOT 6-7

RADARSAT-2
RADARSAT-Constellation

Vision-1 ICEYE

WorldView-2 to 4, GeoEye-1 
(and other Maxar sensors)

SAOCOM-1



Open sensors

GeoPython - EOReader – 06/2022

EOReader opens the sensor products agnostically

Recognizes the sensor thanks to the product name and/or structure 

(by default)

Example



Load and stack bands

GeoPython - EOReader – 06/2022

Loading and stacking bands



Optical bands

GeoPython - EOReader – 06/2022

Available optical bands

Satellite bands: RED, NIR, SWIR, PAN, …

Optical Index: NDVI, NDWI, …

DEM bands: DEM, SLOPE, HILLSHADE

Cloud bands (if existing): CLOUDS, CIRRUS, SHADOWS, …

Bands specification

Always orthorectified

Always projected in UTM

Possibility to remove defective pixels, nodata set by default



Optical Band Mapping

GeoPython - EOReader – 06/2022

Band mapping between optical sensors

https://eoreader.readthedocs.io/en/latest/_static/optical_band_mapping.html
https://eoreader.readthedocs.io/en/latest/_static/optical_band_mapping.html


SAR bands

GeoPython - EOReader – 06/2022

Available SAR bands

Satellite bands: VV, HH, HV, VH

Despeckled bands: VV_DSPK, HH_DSPK, HV_DSPK, VH_DSPK

DEM bands (except hillshade): DEM, SLOPE

Bands specification

Always orthorectified

Always projected in UTM

Nodata set by default



Load and stack bands

GeoPython - EOReader – 06/2022

Example



Load and stack bands

GeoPython - EOReader – 06/2022

• complicated paths for archived data
• nodata not set if not saved into the file
• bands not scaled (still in uint16, need to read the metadata in order 

to scale them)
• need to use other lib to read as xarray (rioxarray)
• not necessarily orthorectified or projected
• need to adapt this piece of code for each band

• read both archived and extracted data the same way 
• masked and scaled bands, converted to float32 
• always orthorectified or projected in UTM 
• loaded as xarray.DataArray
• same logic to load every band, whether a SLOPE, and 

index or an optical band is asked by the user 
• manage stacks automatically 
• load collocated bands 



Geographical data (always projected in UTM)

CRS

Extent

Footprint

Solar angles

Azimuth angle (mean)

Zenith angle (mean)

Read metadata

As a lxml Element and a dictionary containing the namespaces

Other features

GeoPython - EOReader – 06/2022



About the project

GeoPython - EOReader – 06/2022



About the project

EOReader highlights

GeoPython - EOReader – 06/2022

First lines: 2.5 years old

Creation of the library: 05/03/2021

Release in open source: 28/04/2021

Version: 0.13.0 

700 commits, 20k lines of python code

Used daily at SERTIT in a lot of production tools

Growing interest in the community



About the project

Why Python?

Why Open source?

Used by a lot of people, useful scientific libraries 

exist in open source, very easy to learn

We code in Python in SERTIT

Promote a hidden code brick

A lot of open source libraries are used in SERTIT, so we wanted to 

contribute back

Soft power to show that we code here at SERTIT

GeoPython - EOReader – 06/2022



About the project

EOReader standards

GeoPython - EOReader – 06/2022

Lint (pep8 through black, flake8, isort, pre-commit)

Clear and complete documentation (Readme, docstrings, code 

comments, API and tutorials)

Code Coverage > 85% (currently 95%)

License Apache 2.0



About the project

EOReader main dependencies

GeoPython - EOReader – 06/2022

Main python libraries

rioxarray (raster + rasterio)

geopandas

lxml

Other softwares

ESA SNAP



About the project

Tools

Testing

GeoPython - EOReader – 06/2022

IDE: Pycharm

Versioning tool: Git

Package management system: Pip and conda

Stored in Github, mirrored on an internal instance of Gitlab

Documentation (scientific, tutorials and API) on readthedocs

Thematic validation of the results by SERTIT experts

CI on Gitlab (on commits and weekly)

https://github.com/sertit/eoreader
https://eoreader.readthedocs.io/en/latest/


About the project

EOReader challenges

GeoPython - EOReader – 06/2022

Match community and corporates needs and priorities

Manage multi-platform code (Linux and Windows)

Master dependencies (security and exponential growth)



About the project

EOReader’s future

GeoPython - EOReader – 06/2022

Get rid of big non python external tools (such as ESA SNAP)

Make sure the code is optimized (speed, memory consumption) 

Implement all of used CEMS sensors



Thank you for your attention

GeoPython - EOReader – 06/2022



EOReader

Flood delineations

GeoPython - EOReader – 06/2022



EOReader

Satellite differences: Pléiades

GeoPython - EOReader – 06/2022

Stacked, tiled, may need orthorectification

Red = band n°1 (inside the stack)



EOReader

Satellite differences: Landsat-8

GeoPython - EOReader – 06/2022

1 file per band

Red = band n° 4



EOReader

Satellite differences: Sentinel-2

GeoPython - EOReader – 06/2022

1 file per band, very deep file tree, in JPEG-2000 format

Red = band n° 4



EOReader

Satellite differences: Sentinel-3

GeoPython - EOReader – 06/2022

1 file per band, needs geocoding, in NetCDF format

Red = band n° 8


