

an open source remote-sensing python library

GeoPython - EOReader - 06/2022

Table of Contents

- Context
- Main features
- > About the project

GeoPython - EOReader – 06/2022

Université de Strasbourg

ICube-SERTIT

- Technological and service platform of ICube Laboratory in University of Strasbourg
- More than 30 year experience of valorisation and technological transfer in space techniques and Earth Observation applications
- > Production of **geo-information** for:

Environmental studies

Urban planning

Forest management, Natural ressource monitoring

Natural disaster and crisis management

GeoPython - EOReader - 06/2022

Université de Strasbourg

ICube-SERTIT

24/7/365 Rapid Mapping Service

ICUBE

- Rapid Mapping Service a risk and crisis management service operational 24/7/365
 - Uses remote sensing images (satellites and sometimes drones)
 - > Various sensors: ~15 different, optical and radar
 - > Various delivery products: *flood, fire, landslides, etc.*
 - > Delivery in **near-real-time**

de Strasbourg

Motivation behind EOReader

- Satellite data: every sensor is different (bands, storage, ...)
- Crucial to harmonize and increase the reliability of the production tools used in a industrialized framework (*ie. make them as* sensor-agnostic as possible):
 - the developer can focus on core tasks (such as extraction) without taking into account the sensor characteristics
 - New sensors are added effortlessly (if existing in EOReader) and without any modification of any tool
 - Maintenance and testing are simplified and the code is more readable

Main features

GeoPython - EOReader – 06/2022

Available sensors

Optical sensors	SAR sensors
Sentinel-2 and Sentinel-2 Theia Sentinel-3 OLCI and SLSTR	Sentinel-1
Landsat 1 to 9 (MSS, TM, ETM and OLCI)	COSMO-Skymed 1st and 2nd Generation
PlanetScope	TerraSAR-X, TanDEM-X and PAZ SAR
Pleiades-Neo and Pleiades SPOT 6-7	RADARSAT-2 RADARSAT-Constellation
Vision-1	ICEYE
WorldView -2 to 4, GeoEye -1 (and other Maxar sensors)	SAOCOM-1

Sertit

ICUBE

Open sensors

> EOReader opens the sensor products **agnostically**

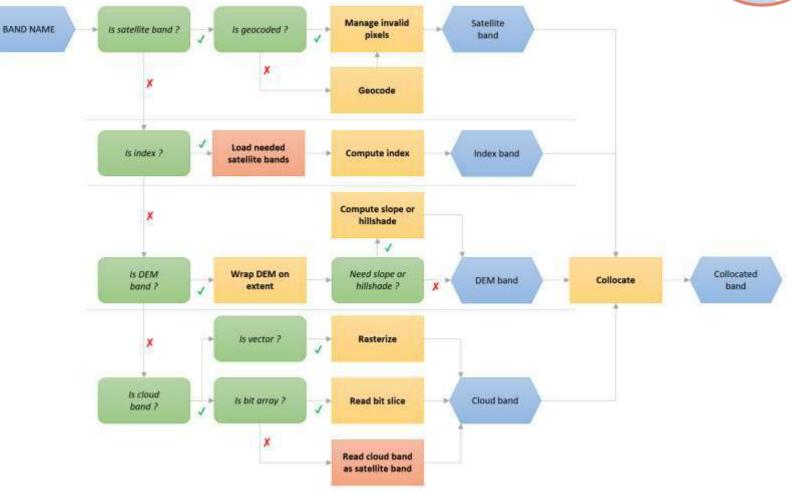
Recognizes the sensor thanks to the product name and/or structure (by default)

Example

```
>>> # Sentinel-2 path
>>> s2_path = "S2B_MSIL1C_20181126T022319_N0207_R103_T51PWM_20181126T050025.SAFE"
>>> # Create the reader object and open satellite data
>>> eoreader = Reader()
>>> # The Reader will recognize the satellite type from its structure
>>> s2_prod = eoreader.open(s2_path)
```

>>> # Sentinel-1 GRD path
>>> s1_path = "S1B_EW_GRDM_1SDH_20200422T080459_20200422T080559_021254_028559_784D.zip"
>>> # Create the reader object and open satellite data

```
>>> eoreader = Reader()
```


```
>>> # The Reader will recognize the satellite type from its structure
>>> s1_prod = eoreader.open(s1_path)
```

de strasbourg

Load and stack bands

GeoPython - EOReader - 06/2022

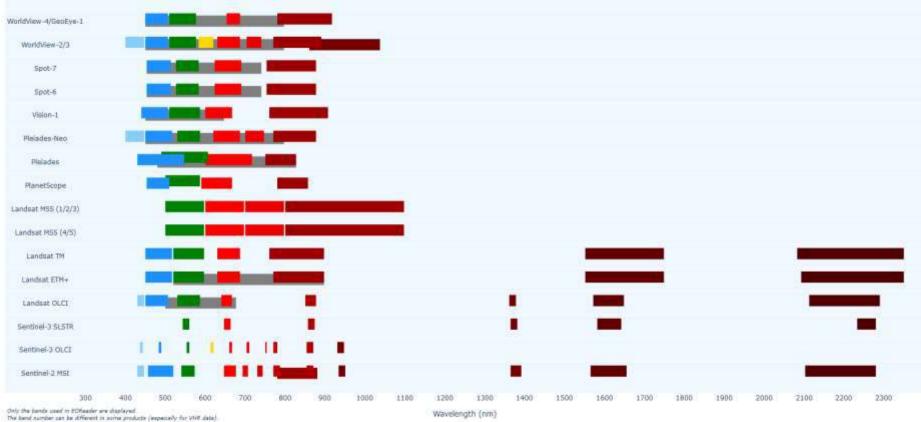
Sertit

ICU3E

GeoPython - EOReader - 06/2022

Optical bands

- Available **optical** bands
 - Satellite bands: RED, NIR, SWIR, PAN, ... >
 - Optical Index: NDVI, NDWI, ...
 - **DEM** bands: DEM, SLOPE, HILLSHADE >
 - Cloud bands (if existing): CLOUDS, CIRRUS, SHADOWS, ... >
- Bands specification
 - Always orthorectified >
 - Always **projected** in UTM
 - Possibility to remove defective pixels, nodata set by default



Optical Band Mapping

> Band mapping between optical sensors

EOReader Optical Band Mapping

GeoPython - EOReader – 06/2022

Sertit

ICUBE

SAR bands

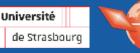
> Available SAR bands

- **Satellite** bands: VV, HH, HV, VH
- **Despeckled** bands: VV DSPK, HH DSPK, HV DSPK, VH DSPK
- **DEM** bands (except hillshade): DEM, SLOPE
- > Bands specification
 - > Always orthorectified
 - > Always projected in UTM
 - Nodata set by default

Load and stack bands

Example

Linking some data


Let's take 3 products from different sensors:

- One Landsat-8 OLCI collection 2
- One Pleiades
- One Sentinel-2 L2A

And one DEM.

```
# Products
prod_folder = os.path.join("/home", "data", "DS3", "CI", "eoreader", "optical")
# Landsat-8 OLCI collection 2 (archived in a tar file)
18_path = os.path.join(prod_folder, "LC08_LITF_200030_20201220_20210310_02_T1.tar")
# Pleiades
pld_path = os.path.join(prod_folder, "IMG_PHR1A_PMS_001")
# Sentinel-2 L2A (archived in a zip file)
s2_path = os.path.join(prod_folder, "S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip")
# Group all these paths
paths = [18_path, pld_path, s2_path]
# DEM
dem_folder = os.path.join("/home", "data", "DS2", "BASES_DE_DONNEES", "GLOBAL")
dem = os.path.join(dem_folder, "COPDEM_30m", "COPDEM_30m.vrt")
os.environ[DEM_PATH] = dem
```


Ser

ICU3E

Load and stack bands

Process these products with rasterio

Just load the NIR band of each of these products.

```
# -- MIH for Landsat-OLCI: band 5
# Get NIR path through TAR file
nir 18 path = rf"tar://(18 path)%1008 117F 200030 20201220 20210310 02 71 85.71F"
# Open NIR file with resterio
with rasterio.open(nir_18_path) as nir_18_ds;
    # Read the file as a numpy array
    nir_18 = nir_18_ds.read()
# -- NIR for Fleiedes: band 4
# Get stack path
pld stack path - cs.path.join(pld path, "DIM PHRIA PMS 202005110231565 ORT 5547047101.KHL")
# Open NIR file with resterio
with rasterio.open(pld_stack_path) as pld_ds:
    # Read the file as a numpy array
    nir pld = pld ds.read(4)
# -- NIE for Sentien1-2: hend #
# Get NIR path through AIP file
nir_s2_path = rf"sip://(s2_path)/$28_MSILIC_202008247110631_B0209_R137_T30TTK_202008247150432.SAFE/"
                "GRANULE/LIC THOTTE A027018 20200824T111345/IMS DATA/THOTTE 20200824T110631 B08.jp2"
# Open NIR file with resterio
with rasterio.open(nir s2 path) as nir s2 ds:
    # Read the file as a numpy array
    nir s2 - nir s2 ds.read()
```

- complicated paths for archived data
- nodata not set if not saved into the file
- bands not scaled (still in uint16, need to read the metadata in order to scale them)
- need to use other lib to read as xarray (rioxarray)
- not necessarily orthorectified or projected
- need to adapt this piece of code for each band

Process these products with EOReader

Load and stack some bands for all these products

```
# Create the reader
eoreader = Reader()
```

```
# Loop on all the products
for path in paths:
    # Open the product
    prod = eoreader.open(path)
```

```
# Load the NIR band
nir = prod.load([NIR])[NIR]
```

```
# Stack some other bands
stack = prod.stack([RED, NDVI, SLOPE])
```

- read both archived and extracted data the same way
- masked and scaled bands, converted to float32
- always orthorectified or projected in UTM
- loaded as xarray.DataArray
- same logic to load every band, whether a SLOPE, and index or an optical band is asked by the user
- manage stacks automatically
- load collocated bands

GeoPython - EOReader - 06/2022

Other features

Geographical data (always projected in UTM)

- > CRS
- > Extent
- Footprint
- > Solar angles
 - > Azimuth angle (mean)
 - > Zenith angle (mean)

> Read metadata

Entrée [5]: # Retrieve the UTM CRS of the tile
prod.crs
Out[5]: CRS.from_epsg(32630)
Entrée [6]: # Open here some more interesting geographical data: extent and footprint
base = prod.extent.plot(color='cyan', edgecolor='black')
prod.footprint.plot(ax=base, color='blue', edgecolor='black', alpha=0.5)
Out[6]: <AxesSubplot:>

550000 600000 650000 700000 750000

> As a lxml Element and a dictionary containing the namespaces

4.75

4.70

Université

GeoPython - EOReader - 06/2022

EOReader highlights

- First lines: 2.5 years old
- Creation of the library: 05/03/2021
- Release in open source: 28/04/2021
- > Version: **0.13.0**
- > 700 commits, 20k lines of python code
- Used daily at SERTIT in a lot of production tools
- Growing interest in the community

Why Python?

- Used by a lot of people, useful scientific libraries exist in **open source**, very **easy** to learn
- We code in Python in SERTIT

Why Open source?

- **Promote** a hidden code brick
- A lot of open source libraries are used in SERTIT, so we wanted to contribute back
- *Soft power* to show that we code here at SERTIT

ICUBE

EOReader standards

- Lint (pep8 through black, flake8, isort, pre-commit)
- Clear and complete documentation (Readme, docstrings, code comments, API and tutorials)
- Code Coverage > 85% (currently 95%)
- **License** Apache 2.0

EOReader main dependencies

- > Main **python** libraries
 - > rioxarray (raster + rasterio)
 - > geopandas
 - > lxml
- > Other softwares
 - > ESA SNAP

GeoPython - EOReader - 06/2022

- 📴 > IDE: Pycharm
- 💊 git 🔉 Versioning tool: Git
 - Package management system: Pip and conda
 - Stored in <u>Github</u>, mirrored on an internal instance of Gitlab
 - Documentation (scientific, tutorials and API) on <u>readthedocs</u>

Testing

Tools

- > Thematic validation of the results by SERTIT experts
- > CI on Gitlab (on commits and weekly)

Sertit

ICUBE

EOReader challenges

- > Match community and corporates needs and priorities
- Manage multi-platform code (Linux and Windows)
- > Master dependencies (security and exponential growth)

ICU3E

EOReader's future

- Set rid of **big non python external** tools (such as ESA SNAP)
- > Make sure the code is **optimized** (speed, memory consumption)
- Implement all of used CEMS sensors

de Strasbourg

Thank you for your attention

GeoPython - EOReader - 06/2022

Université de Strasbourg

Flood delineations

GeoPython - EOReader - 06/2022

Satellite differences: Pléiades

- Stacked, tiled, may need orthorectification
- Red = band n°1 (inside the stack)

IEO > DATA > PRODS > PLEIADES > 5452664101 > IMG_PHR1A_PMS_001

Nom	Modifié le	Туре	Taille
LIBRARY	28/05/2021 18:25	Dossier de fichiers	
	28/05/2021 18:25	Dossier de fichiers	
MASKS	31/05/2021 14:56	Dossier de fichiers	
DIM_PHR1A_PMS_202010310915598_ORT_5452664101.XML	02/11/2020 16:07	Fichier XML	100 Ko
ICON_PHR1A_PMS_202010310915598_ORT_5452664101.JPG	02/11/2020 16:07	Fichier JPG	16 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R1C1.TFW	02/11/2020 16:06	Fichier TFW	1 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R1C1.TIF	02/11/2020 16:06	Fichier TIF	2 097 154 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R1C2.TFW	02/11/2020 16:06	Fichier TFW	1 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R1C2.TIF	02/11/2020 16:05	Fichier TIF	1 633 026 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R2C1.TFW	02/11/2020 16:06	Fichier TFW	1 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R2C1.TIF	02/11/2020 16:05	Fichier TIF	1 473 410 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R2C2.TFW	02/11/2020 16:06	Fichier TFW	1 Ko
IMG_PHR1A_PMS_202010310915598_ORT_5452664101_R2C2.TIF	02/11/2020 16:04	Fichier TIF	1 147 325 Ko
MDEX.HTM	02/11/2020 16:07	Firefox HTML Docu	20 Ko
PREVIEW_PHR1A_PMS_202010310915598_ORT_5452664101.JPG	02/11/2020 16:07	Fichier JPG	359 Ko
PREVIEW_PHR1A_PMS_202010310915598_ORT_5452664101.KMZ	02/11/2020 16:07	KMZ	417 Ko



Sertit

ICU3E

Université

de Strasbourg

Satellite differences: Landsat-8

- > 1 file per band
- Red = band n° 4

O > DATA > PRODS > LANDSATS_COL2 > LC08_L1TP_200030_20201220_20210310_02_T1

Nom	Date	Туре	Taille
LC08_L1TP_200030_20201220_20210310_02_T1_ANG.txt	10/03/2021 03:28	Fichier TXT	115 K
Q LC08_L1TP_200030_20201220_20210310_02_T1_B1.TIF	10/03/2021 03:29	Fichier TIF	78 361 K
Q LC08_L1TP_200030_20201220_20210310_02_T1_B2.TIF	10/03/2021 03:29	Fichier TIF	79 841 K
🔇 LC08_L1TP_200030_20201220_20210310_02_T1_B3.TIF	10/03/2021 03:30	Fichier TIF	82 369 K
🔇 LC08_L1TP_200030_20201220_20210310_02_T1_B4.TIF 🦰	10/03/2021 03:30	Fichier TIF	83 332 K
Q LC08_L1TP_200030_20201220_20210310_02_T1_B5.TIF	10/03/2021 03:30	Fichier TIF	89 923 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_B6.TIF	10/03/2021 03:30	Fichier TIF	86 953 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_B7.TIF	10/03/2021 03:30	Fichier TIF	83 826 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_B8.TIF	10/03/2021 03:31	Fichier TIF	325 339 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_B9.TIF	10/03/2021 03:31	Fichier TIF	45 517 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_B10.TIF	10/03/2021 03:31	Fichier TIF	76 449 K
Q LC08_L1TP_200030_20201220_20210310_02_T1_B11.TIF	10/03/2021 03:31	Fichier TIF	74 691 k
LC08_L1TP_200030_20201220_20210310_02_T1_MD5.txt	10/03/2021 03:32	Fichier TXT	21
LC08_L1TP_200030_20201220_20210310_02_T1_MTL.txt	10/03/2021 03:32	Fichier TXT	13 k
LC08_L1TP_200030_20201220_20210310_02_T1_MTL.xml	10/03/2021 03:32	Fichier XML	18 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_QA_PIXEL.TIF	10/03/2021 03:31	Fichier TIF	4 327 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_QA_RADSAT.TIF	10/03/2021 03:32	Fichier TIF	226
Q LC08_L1TP_200030_20201220_20210310_02_T1_SAA.TIF	10/03/2021 03:32	Fichier TIF	1 339 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_SZA.TIF	10/03/2021 03:32	Fichier TIF	1 721 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_VAA.TIF	10/03/2021 03:32	Fichier TIF	9 046 k
Q LC08_L1TP_200030_20201220_20210310_02_T1_VZA.TIF	10/03/2021 03:32	Fichier TIF	3 505 k

Satellite differences: Sentinel-2

- > 1 file per band, very deep file tree, in JPEG-2000 format
- Red = band n° 4

:O > DATA > PRODS > SENTINEL > Sentinel-2 > S2B_MSIL1C_20181126T022319_N0207_R103_T51PWM_20181126T050025.SAFE > GRANULE > L1C_T51PWM_A008995_20181126T022322 > IMG_DATA

Nom	Modifié le	Туре	Taille
🔇 T51PWM_20181126T022319_B01.jp2	26/11/2018 07:12	Fichier JP2	3 450 Ko
Q T51PWM_20181126T022319_B02.jp2	26/11/2018 07:13	Fichier JP2	96 213 Ko
🔇 T51PWM_20181126T022319_B03.jp2	26/11/2018 07:13	Fichier JP2	99 681 Ko
🔇 T51PWM_20181126T022319_B04.jp2 🦰	26/11/2018 07:13	Fichier JP2	99 119 Ko
Q T51PWM_20181126T022319_B05.jp2	26/11/2018 07:13	Fichier JP2	28 762 Ko
Q T51PWM_20181126T022319_B06.jp2	26/11/2018 07:13	Fichier JP2	31 390 Ko
Q T51PWM_20181126T022319_B07.jp2	26/11/2018 07:13	Fichier JP2	32 157 Ko
Q T51PWM_20181126T022319_B08.jp2	26/11/2018 07:13	Fichier JP2	116 247 Ko
Q T51PWM_20181126T022319_B8A.jp2	26/11/2018 07:13	Fichier JP2	32 279 Ko
Q T51PWM_20181126T022319_B09.jp2	26/11/2018 07:12	Fichier JP2	3 265 Ko
Q T51PWM_20181126T022319_B10.jp2	26/11/2018 07:12	Fichier JP2	1 955 Ko
Q T51PWM_20181126T022319_B11.jp2	26/11/2018 07:13	Fichier JP2	28 951 Ko
Q T51PWM_20181126T022319_B12.jp2	26/11/2018 07:13	Fichier JP2	27 522 Ko
Q T51PWM_20181126T022319_TCI.jp2	26/11/2018 07:14	Fichier JP2	130 861 Ko

GeoPython - EOReader - 06/2022

Satellite differences: Sentinel-3

Red = band $n^{\circ} 8$

> 1 file per band, needs geocoding, in NetCDF format

Nom	Modifie le	Type	Taille
geo_coordinates.nc	16/12/2019 16:47	Fichtier NC	52 844 Ke
instrument_data.nc	16/12/2019 16:47	Fichim NC	1 034 Ko
Oa01_radiance.nc	16/12/2019 16:47	Fichier NC	23 958 Kp
Oa02_radiance.nc	15/12/2019 16:47	Fichier NC	24 572 Ko
Ga03_radiance.nc	16/12/2019 16:47	Fichier NC	25 517 Ko
Oa04_radiance.nc	16/12/2019 16:47	Fichier N/C	26 093 Ko
Oa05_radiance.nc	16/12/2019 16:47	Fichier NC	26 502 Ko
Oa06_radiance.nc	16/12/2019.16/47	Fichier NC	25 630 Ko
Ca07_radiance.nc	16/12/2019 16:47	Fichier NC	26.582 Ke
🖀 Oa08_radiance.nc 🚣	16/12/2019 16:47	Fichier NC	26.774 Ko
Ca09_radiance.nc	16/12/2019 16:47	Fichier NC	26 509 Ko
Gall_radiance.nc	16/12/2019 16:47	Fichier NC	27 154 Ko
Oall_radiance.nc	16/12/2019 16:47	Eichier NC	27 529 Ko
Ge12_radiance.nc	16/12/2019 16:47	Fichier NC	27 264 Ko
Oa13_radiance.nc	16/12/2019 16:47	Fichier NC	23 504 Ko
Gal4_radiance.nc	16/12/2019 16:47	Fichier NC	24 708 Ke
Oa15_radiance.nc	16/12/2019 16:47	Fichier NC	27 928 Ko
Gall_radiance.nc	16/12/2019 16:47	Fichier NC	25 053 Kg
Ga17_radiance.nc	16/12/2019 16:47	Fichier NC	27 776 Ko
Oa18_radiance.nc	16/12/2019 16:47	Fichier NC	27.361 Ka
Oa19_radiance.nc	16/12/2019 16:47	Fichier NC	27.031 Ko
Ga20_radiance.nc	16/12/2019 16:47	Fichier NC	25 570 Ko
Oa21_radiance.nc	16/12/2019 16:47	Fichier NC	28.146 Ko
gualityFlags.nc	16/12/2019 16:47	Fichier NC	2.601 Ko
removed_pixels.nc	16/12/2019 16:47	Fichier NC	18 055 Ko
tie_geo_coordinates.nc	16/12/2019 16:47	Fichim NC	1.203 Ko
tie_geometries.nc	16/12/2019 16:47	Fichier NC	2.062 K.o
tie_meteo.nc	16/12/2019 16:47	Fichier NC	19.513 Ko
time_coordinates.nc	16/12/2019 16:47	Fichier NC	16 Ko
📴 «fdumanifest.xml	16/12/2019 16:47	Fichier XML	143 Ke

EO + DATA + PROD5 + SENTINEL + Sentinel-3 + S3A OL 1 EFR __20191215T105023_20191215T105323_20191216T153115_0179_052_322_2160_UN1_O_NT_002.5EN3

